skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Newsome, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding variations in the routes by which wild animals gain and lose water is challenging, and common methods require longitudinal sampling, which can be prohibitive. However, a new approach usesΔ′17OBW(Δ′17O of animal body water), calculated from measurements ofδ′17O andδ′18O in a single sample, as a natural tracer of water flux.Δ′17OBWis promising, but its relationship to organismal variables such as metabolic rate and water intake have not been validated. Here, we continuously measured oxygen influxes and effluxes of captive deer mice (Peromyscus maniculatus), and manipulated their water intake and metabolic rate. We used these oxygen flux data to predictΔ′17OBWfor the mice and compared these model predictions withΔ′17OBWmeasured in blood plasma samples. As expected,Δ′17OBWpositively correlated with drinking water intake and negatively correlated with metabolic rate. All predictedΔ′17OBW(based on measured oxygen fluxes) values differed from measuredΔ′17OBWvalues by <30 per meg (mean absolute difference: 11 ± 9 per meg), suggesting high accuracy for this modelling approach because studies currently report a range of 300 per meg forΔ′17OBWamong mammals, birds and fish. 
    more » « less
  2. The middle-late Holocene in Southern Belize saw shifts in subsistence strategies including the introduction of managed plants and animals. Botanical and stable isotopic data have been used to track the introduction of agricultural products into diet with maize first consumed before 7,000 cal. BP. However, the timing of the introduction of managed animals is less understood because early faunal assemblages are rare. Carbon isotope (d13C) analysis of amino acids (CSIA-AA) is a powerful tool that allows researchers to track biochemical origins of individual amino acids into consumer tissues. CSIA-AA analysis of directly dated human skeletons from two rockshelters spanning the transition to agriculture show a trend of increasing d13Clysine values indicating a C4 lysine origin in individuals by the Classic Maya period. Additionally, individuals that date to the middle Holocene demonstrate higher than expected incorporation of C4-derived lysine. Based on the low abundance of lysine in maize (C4-plant) and daily lysine requirements in humans, these results are only possible through trophic concentration of C4-derived lysine, obtained by consuming maize-eating animals. We propose that human d13Clysine values can be used to track the incorporation of managed, but not necessarily domesticated, animals into neotropical diets during the transition to agriculture. 
    more » « less
  3. We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean x Variance Experiment (MVE) adds three novel elements to prior designs (Gherardi & Sala 2013) that have manipulated interannual variance in climate in the field by (i) determining interactive effects of mean and variance with a factorial design that crosses a drier mean with increased (more) variance, (ii) studying multiple dryland ecosystem types to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And, how does micro-environmental variation among plots influence how much MVE treatments alter soil moisture profiles over three soil depths? This data package includes soil moisture and temperature sensor data from the Mean x Variance Climate experiment in the Desert grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM. 
    more » « less
  4. We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean - Variance Experiment (MVE) adds three novel elements to prior designs that have manipulated interannual variance in climate in the field (Gherardi & Sala, 2013) by (i) determining interactive effects of mean and variance with a factorial design that crosses reduced mean with increased variance, (ii) studying multiple dryland biomes to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And How does micro-environmental variation among plots influence how treatments alter soil moisture profiles over three soil depths? This data package includes sensor data from the Mean x Variance experiment in the Plains grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM, which is dominated by the grass species Bouteloua gracilis (blue grama). 
    more » « less
  5. Abstract Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above‐ and belowground systems were historically compartmentalized into “green” and “brown” food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ 13 C, δ 15 N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems. 
    more » « less
  6. Abstract Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ 13 C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ 13 C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ 13 C fingerprinting has never been experimentally tested in a vertebrate consumer. We tested the efficacy of δ 13 C fingerprinting using captive deer mice Peromyscus maniculatus raised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ 13 C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ 13 C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers. We found that EAA δ 13 C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ 13 C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ 13 C source fingerprints from published literature can lead to erroneous diet reconstruction. We show that δ 13 C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ 13 C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique. 
    more » « less
  7. Tracing how free-ranging organisms interact with their environment to maintain water balance is a difficult topic to study for logistical and methodological reasons. We use a novel combination of triple-oxygen stable isotope analyses of water extracted from plasma (δ16O, δ17O, δ18O) and bulk tissue carbon (δ13C) and nitrogen (δ15N) isotopes of feathers and blood to estimate the proportional contribution of marine resources, seawater, and metabolic water used by two species of unique songbirds (genusCinclodes) to maintain their water balance in a seasonal coastal environment. We also assessed the physiological adjustments that these birds use to maintain their water balance. In agreement with previous work on these species, δ13C and δ15N data show that the coastal resident and invertivoreC. nigrofumosusconsumes a diet rich in marine resources, while the diet of migratoryC. oustaletishifts seasonally between marine (winter) to freshwater aquatic resources (summer). Triple-oxygen isotope analysis (Δ17O) of blood plasma, basal metabolic rate (BMR), and total evaporative water loss (TEWL) revealed that ~25% of the body water pool of both species originated from metabolic water, while the rest originated from a mix of seawater and fresh water. Δ17O measurements suggest that the contribution of metabolic water tends to increase in summer inC. nigrofumosus, which is coupled with a significant increase in BMR and TEWL. The two species had similar BMR and TEWL during the austral winter when they occur sympatrically in coastal environments. We also found a positive and significant association between the use of marine resources as measured by δ13C and δ15N values and the estimated δ18O values of ingested (pre-formed) water in both species, which indicates that Cinclodes do not directly drink seawater but rather passively ingest when consuming marine invertebrates. Finally, results obtained from physiological parameters and the isotope-based estimates of marine (food and water) resource use are consistent, supporting the use of the triple-oxygen isotopes to quantify the contribution of water sources to the total water balance of free-ranging birds. 
    more » « less